
© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 1

Slides & demos: BrentOzar.com/go/sniff

Why is the Same Query 
Sometimes Slow?

Slides & demos: BrentOzar.com/go/sniff

Abstract
Sometimes the exact same query goes slow out of nowhere. 
Your current fix is to update statistics, rebuild indexes, or 
restart the SQL Server. It works, but you don’t know why.

The single most common reason is parameter sniffing. SQL 
Server "sniffs" the first set of parameters for a query, builds 
an execution plan for it, and then reuses that same plan no 
matter what parameters get called. It’s been the bane of our 
performance tuning for decades.

In this session, Brent Ozar will explain how it happens, how 
SQL Server 2022 is trying to fix it, and how you can work 
around emergencies in the meantime.



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 2

Slides & demos: BrentOzar.com/go/sniff

99-05: dev, architect, DBA
05-08: DBA, VM, SAN admin
08-10: MCM, Quest Software

Since: consulting DBA

www.BrentOzar.com
Help@BrentOzar.com

Slides & demos: BrentOzar.com/go/sniff

I’m going to teach you 3 things.
1. What parameter sniffing is

2. How SQL Server 2022 tries to reduce it

3. Learning resources for reducing the stench

Slides, demos, resources: cleverly hidden below



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 3

Slides & demos: BrentOzar.com/go/sniff

1. What it is

Slides & demos: BrentOzar.com/go/sniff

Tools I’m using
Microsoft SQL Server 2022
(but all SQL Server versions, Azure SQL DB flavors, 
Amazon RDS, etc. have the exact same issue)

Stack Overflow db: BrentOzar.com/go/querystack
(any size will work – I’m using a big one)



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 4

Slides & demos: BrentOzar.com/go/sniff

Slides & demos: BrentOzar.com/go/sniff

Create an index on Reputation
But only Reputation – not enough to cover this query:



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 5

Slides & demos: BrentOzar.com/go/sniff

SQL Server 
uses the index.

Slides & demos: BrentOzar.com/go/sniff

Measuring the plan
Reputation 2
(Small Data)

Plan shape Index seek + key lookup

Logical reads 28,048

Parallel No

Memory grant 56 MB

Duration ~1 second

Your metrics will be different depending on the size of Stack Overflow db
you’re using.



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 6

Slides & demos: BrentOzar.com/go/sniff

Now try Reputation = 1.

Slides & demos: BrentOzar.com/go/sniff

Measuring the plans
Reputation 2
(Small Data)

Reputation 1
(Big Data)

Plan shape Index seek + key lookup Table scan

Logical reads 28,048 141,666

Parallel No Yes

Memory grant 56 MB ~1,500 MB

Duration ~1 second ~10-15 seconds

Your metrics will be different depending on the size of Stack Overflow db
you’re using, but overall you’ll see the same small/large pattern.



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 7

Slides & demos: BrentOzar.com/go/sniff

Slides & demos: BrentOzar.com/go/sniff

But it doesn’t look every time.
It only looks when there’s no plan cached in memory.

Building plans is computationally intensive, so when 
you run a query, SQL Server:

• Checks the plan cache to see if a valid plan has 
already been compiled

• If so, reuses that plan
• If not, builds the plan, puts it in cache, and then 

starts running your query



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 8

Slides & demos: BrentOzar.com/go/sniff

This saves CPU & time.

Slides & demos: BrentOzar.com/go/sniff

2 different queries, 2 plans.
SQL Server builds a hash of 
the query text.

Different query text = 
new plans get generated.

Sometimes they’re different.

Sometimes they’re the same.



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 9

Slides & demos: BrentOzar.com/go/sniff

Let’s put it in a stored procedure.
Same query – just parameterized.

Slides & demos: BrentOzar.com/go/sniff

The first time, it runs for 2…



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 10

Slides & demos: BrentOzar.com/go/sniff

Measuring the plans
Reputation 2
(Small Data)

Plan shape Index seek + key lookup

Logical reads 28,048

Parallel No

Memory grant 56 MB

Duration ~1 second

Your metrics will be different depending on the size of Stack Overflow db
you’re using, but overall you’ll see the same small/large pattern.

Slides & demos: BrentOzar.com/go/sniff

But now run it for 1…



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 11

Slides & demos: BrentOzar.com/go/sniff

What USED to happen…
Reputation 2
(Small Data)

Reputation 1
(Big Data)

Plan shape Index seek + key lookup Table scan

Logical reads 28,048 141,666

Parallel No Yes

Memory grant 56 MB ~1,500 MB

Duration ~1 second ~10-15 seconds

Your metrics will be different depending on the size of Stack Overflow db
you’re using, but overall you’ll see the same small/large pattern.

Slides & demos: BrentOzar.com/go/sniff

What’s happening now:
Reputation 2
(Small Data)

Reputation 1
(Big Data)

Plan shape Index seek + key lookup Index seek + key lookup

Logical reads 28,048 18,521,946

Parallel No No (and needs it!)

Memory grant 56 MB 56 MB (spills to disk)

Duration ~1 second >30 seconds

Customers call in complaining that queries are timing out.



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 12

Slides & demos: BrentOzar.com/go/sniff

The plan was compiled for 2.

Slides & demos: BrentOzar.com/go/sniff

This is sniffing.
SQL Server sniffs the 
input parameters used 
when putting the plan 
into cache.

As long as that plan is 
in cache, everyone 
gets the same plan.



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 13

Slides & demos: BrentOzar.com/go/sniff

“But you have to fix it!”
Customers are screaming

Small data parameters run quickly

Large data parameters:
• Cause app timeouts at 30+ seconds
• Hammer TempDB due to spills

So you try to “fix” it…

Slides & demos: BrentOzar.com/go/sniff

In order of career seniority
1. Restart the operating system

2. Restart the SQL Server service

3. Fail over the cluster/AG/mirror

4. DBCC FREEPROCCACHE

5. Rebuild indexes

6. Update statistics



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 14

Slides & demos: BrentOzar.com/go/sniff

In order of career seniority
1. Restart the operating system

2. Restart the SQL Server service

3. Fail over the cluster/AG/mirror

4. DBCC FREEPROCCACHE

5. Rebuild indexes

6. Update statistics

THESE ARE ALL DOING 

THE SAME BASIC THING:

freeing parts of the plan cache.

Slides & demos: BrentOzar.com/go/sniff

What really happens
You do one of those “fixes”

Plans are removed from the plan cache

Someone runs the query that used to be slow

SQL Server checks the plan cache, and since there’s 
no cached plan for that query, it builds a new one

And sniffs the parameters that used to be slow
(thereby building a good plan for it)



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 15

Slides & demos: BrentOzar.com/go/sniff

Simulating it

Yay!

Slides & demos: BrentOzar.com/go/sniff

Yay! Things are better, right?
Reputation 1

(Big Data)
Reputation 1

(Big Data)

Plan shape Table scan Table scan

Logical reads 141,666 141,666

Parallel Yes Yes

Memory grant ~1,500 MB ~1,500 MB

Duration ~10-15 seconds ~10-15 seconds

At first, yes.



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 16

Slides & demos: BrentOzar.com/go/sniff

But now run it for reputation 2…

Yay!

Slides & demos: BrentOzar.com/go/sniff

Actually… not so bad, right?
Reputation 1

(Big Data)
Reputation 2
(Small Data)

Plan shape Table scan Table scan

Logical reads 141,666 141,666

Parallel Yes Yes

Memory grant ~1,500 MB ~1,500 MB

Duration ~10-15 seconds <1 second

At first, this seems like a winner: all we have to do is make sure the “big” 
plan goes into memory first, and users are happy.



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 17

Slides & demos: BrentOzar.com/go/sniff

Well, hang on…

Slides & demos: BrentOzar.com/go/sniff

Well, hang on…
Every time any parameter runs, it gets ~1.5 GB RAM.

• SQL Server erases those pages for this query

• The query runs nearly instantly, turns the RAM in

• Whatever was cached before is gone.

Page Life Expectancy dive-bombs constantly.



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 18

Slides & demos: BrentOzar.com/go/sniff

There is no one good plan here.

If we cache the small data plan,
big data parameters time out, spill to disk, 
read more pages than there are in the table.

If we cache the big data plan,
query duration is fine, but
we can’t cache anything in memory
because we keep granting queries too much RAM.

Slides & demos: BrentOzar.com/go/sniff

How SQL Server tried in the past
SQL Server 2016: Query Store

SQL Server 2017: 
• Automatic Plan Regression (Automatic Tuning)
• Adaptive Joins

SQL Server 2019: Adaptive Memory Grant Feedback

None of these solve the problem we’re seeing here.



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 19

Slides & demos: BrentOzar.com/go/sniff

2. How SQL Server 2022 
tries to reduce it

Slides & demos: BrentOzar.com/go/sniff

In 2019 compatibility level…
When a query comes in:

1. SQL Server checks to see if a query plan has been 
compiled for it

2. If yes, then run with it

3. If no, sniff the parameters, build a plan for them, 
and cache that plan for everyone



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 20

Slides & demos: BrentOzar.com/go/sniff

In 2022 compatibility level…
When a query comes in:

1. SQL Server checks to see if a query plan has been 
compiled for it

2. If yes, then run with it

3. If no, sniff the parameters, build a plan for them, 
and cache that plan for everyoneThis changes

Slides & demos: BrentOzar.com/go/sniff

How sniffing works in 2022
SQL Server looks at equality search parameters

Looks at their statistics histograms

If the histograms have outliers for any value
(not just the ones getting sniffed), new logic kicks in: 
Parameter Sensitive Plan Optimization (PSPO)



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 21

Slides & demos: BrentOzar.com/go/sniff

The query itself was changed

(Don’t worry, I’ll copy that to a new window)

New

Slides & demos: BrentOzar.com/go/sniff



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 22

Slides & demos: BrentOzar.com/go/sniff

The equality predicate on Reputation has outliers.

It will build separate plans for Reputations that have: 
• < 100.0 estimated rows
• 100.0 – 1,000,000.0 estimated rows
• > 1,000,000.00 estimated rows

Slides & demos: BrentOzar.com/go/sniff

This is a neat idea!
The plans aren’t hard-coded to specific Reputations.

Only the plan needed now actually gets compiled.

The rest are postponed for later compilation:
they’ll get sniffed for whatever value gets used at the 
time we need that plan.

Now, both Reputation 2 and 1 get different plans!



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 23

Slides & demos: BrentOzar.com/go/sniff

Slides & demos: BrentOzar.com/go/sniff

The good news
The implementation logic is conservative:

• Only shows up in compat level >160

• Only shows up for equality searches
(and a limited number of them at that)

• Only caches a limited number of plans
(less worry about plan cache bloat)

• Where it shows up in plans, it will help!



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 24

Slides & demos: BrentOzar.com/go/sniff

The less-good, but not bad news
It only fires for equality searches, 
not range searches like StartDate/EndDate

It only fires for direct comparisons, 
not joined filters (PostTypeId)

Each of the small/medium/large plans is still 
vulnerable to parameter sniffing

Slides & demos: BrentOzar.com/go/sniff

The truly awful news
The PSPO implementation breaks query monitoring.

Monitoring tools can’t tell where queries are from.

All PSPO queries act like dynamic SQL:
they have no parent/child relationship to the code.



© Brent Ozar Unlimited®. All rights reserved. 
BrentOzar.com/go/sniff 25

Slides & demos: BrentOzar.com/go/sniff

3. Where to go 
to learn more

Slides & demos: BrentOzar.com/go/sniff

Resources:
Slides, demos: https://BrentOzar.com/go/sniff

More details on SQL Server 2022’s PSPO:
https://BrentOzar.com/go/pspo

Erland Sommarskog’s Slow in the App, Fast in SSMS: 
https://www.sommarskog.se/query-plan-mysteries.html

https://brentozar.com/go/sniff
https://brentozar.com/go/pspo
https://www.sommarskog.se/query-plan-mysteries.html

